viernes, 7 de enero de 2011

PASOS Y RECOMENDACIONES PARA REPARAR UN MOTOR

Primero con la culata.
Separarla del monoblok, lavarla y desarmarla: tapa de cabeza o tapa de balancines , válvulas, resortes, sellos, balancines, buzos (ya sean hidráulicos o mecánicos) etc, o sea “toda la cabeza desarmarla y lavarla”. Después revisar cada pieza (con una lupa y muy buena iluminación) que no tenga fracturas o estén torcidas, para esto necesitas calibradores para ir midiendo cada pieza.

Las piezas fracturadas o torcidas comprarlas nuevas y volverla a armar asentando válvulas con la crema pulidora.

Luego el monoblok:

Igual desarmarlo: cigüeñal, pistones, anillos, metales, árbol(es) de levas, bomba de aceite, etc. y lavar. Después revisar cada pieza (con una lupa y muy buena iluminación) que no tenga fracturas o estén torcidas, para esto necesitas calibradores para ir midiendo cada pieza.

Las piezas fracturadas o torcidas comprarlas nuevas, REVISAR MUY BIEN LA MEDIDA DE LOS PISTONES Y LA CAMARA o camisas, si ya presenta desgaste mandar al torno a hacer una medida diferente, para esto la medida será diferente la de los pistones.

Por supuesto que para antes de armar ya debes tener a la mano el repuesto de empaques nuevos.

Al armar el monoblok tener a la mano aceite nuevo e ir aceitando de manera generosa las partes armadas como: metales, anillos con pistones, (de preferencia grasa en los retenes) y para ir armando monoblok y cabeza necesitas una llave calibradora de torsión (para medir las libras de “apretado” de cada tornillo, mas conocido por los mecanicos como torquimetro) para no apretar de mas ni menos cada tornillo aaa!! Y no se te olvide remplazar todas las roldadas de presión y sellos del monoblock.

En la puesta a punto del motor no ovides que tienes que tener mucho cuidado con las marcas de referencia, en caso las marcas ya no esten, poner a pms el piston numero uno y las valvulas del primer cilindro cerrdas totalmente o tmbien lo puedes hacer segun los grados con los que trabaja el motor o en todo caso contando los dientes de la faja o correa, en el caso de que sea por cadena casi que no hay marcas en el bloque solo en los piñones y en la cadena sincronisalos maraca con marca de piñon y cadena

Y listo después de que armes y ponerle todas las partes de ignición además de un muy buen aceite, enciende el motor!!!!.

RECOMENDACIONES:

No revolucionar el motor en unos 500 km
Cambiarle el aceite a los 1000 km
Si las válvulas están gobernadas por buzos y balancines mecánicos, a los 1000 km ajustarlos con el motor encendido.

Y listo, después de los 1000 km a pisarle!!!! Para asentar el motor.

Suerte, si lo quieres hacer mas RAPIDO Y FURIOSO ponle esto:
Sistema electrónico de encendido (la chispa es mas poderosa que platino y condensador).
Arbol de levas de alto rendimiento (buscame para cualquier consulta).
Palanca de velocidades cortas.
me estoy specializandopara poder modificar los chips de la computadora para que tengan mayor rendimiento los censores. Y hai mismo tienen un especie de TURBO que se llama TWISTER que es parecido. y muy pronto no podía faltar el OXIDO NITROSO.

att. Fustamante Muñoz Ronal tecnico mecanico y estudiante de ing. mec. y electrica

jueves, 8 de julio de 2010

MECANICA DE MOTORES OTTO Y DIESEL

MECANICA DE MOTORES DE COMBUSTION INTERNA OTTO Y DIESEL

Un motor de combustión interna es un tipo de máquina que obtiene energía mecánica directamente de la energía química producida por un combustible que arde dentro de una cámara de combustión. Su nombre se debe a que dicha combustión se produce dentro de la máquina en si misma, a diferencia de, por ejemplo, la máquina de vapor.


Planificar ejecutar y dirigir los procesos tecnológicos relacionados con el mantenimiento reparación y recuperación de piezas de motores de combustión interna.
Resolver los problemas relacionados con la modernización y fiabilidad de los sistemas de los motores de combustión interna.
Realizar los respectivos estudios de análisis metalográficos a las fallas del MCI Kamaz
Historia
Los primeros motores de combustión interna alternativos de gasolina que sentaron las bases de los que conocemos hoy fueron construidos casi a la vez por Karl Benz y Gottlieb Daimler. Los intentos anteriores de motores de combustión interna no tenían la fase de compresión, sino que funcionaban con una mezcla de aire y combustible aspirada o soplada dentro durante la primera parte del movimiento del sistema. La distinción más significativa entre los motores de combustión interna modernos y los diseños antiguos es el uso de la compresión.
Estructura y funcionamiento
Los motores Otto y los diesel tienen los mismos elementos principales, (bloque, cigueñal, biela, pistón, culata, válvulas) y otros específicos de cada uno , como la bomba inyectora de alta presión en los diesel, o antiguamente el carburador en los Otto.
En los 4T es muy frecuente designarlos mediante su tipo de distribución: SV, OHV, SOHC, DOHC. Es una referencia a la disposición del (o los) árbol de levas.
Cámara de combustión
La cámara de combustión es un cilindro, por lo general fijo, cerrado en un extremo y dentro del cual se desliza un pistón muy ajustado al cilindro. La posición hacia dentro y hacia fuera del pistón modifica el volumen que existe entre la cara interior del pistón y las paredes de la cámara. La cara exterior del pistón está unida por una biela al cigüeñal, que convierte en movimiento rotatorio el movimiento lineal del pistón. en En los motores de varios cilindros, el cigüeñal tiene una posición de partida, llamada espiga de cigüeñal y conectada a cada eje, con lo que la energía producida por cada cilindro se aplica al cigüeñal en un punto determinado de la rotación. Los cigüeñales cuentan con pesados volantes y contrapesos cuya inercia reduce la irregularidad del movimiento del eje. Un motor alternativo puede tener de 1 a 28 cilindros.
Sistema de Alimentación

Carburador SOLEX monocuerpo.
El sistema de alimentación de combustible de un motor Otto consta de un depósito, una bomba de combustible y un dispositivo dosificador de combustible . que vaporiza o atomiza el combustible desde el estado líquido, en las proporciones correctas para poder ser quemado. Se llama carburador al dispositivo que hasta ahora venía siendo utilizado con este fin en los motores Otto. Ahora los sistemas de inyección de combustible lo han sustituido por completo por motivos medioambientales . En los motores Diesel se dosifica el combustible gasoil de manera no proporcional al aire que entra, sino en función del mando de aceleración y el régimen motor (mecanismo de regulación) mediante una Bomba inyectora de combustible.

Bomba de inyección de combustible BOSCH para motor diésel.
En los motores de varios cilindros el combustible vaporizado se lleva los cilindros a través de un tubo ramificado llamado colector de admisión. La mayor parte de los motores cuentan con un colector de escape o de expulsión, que transporta fuera del vehículo y amortigua el ruido de los gases producidos en la combustión.
Sistema de Distribución

Válvulas y árbol de levas.
Cada cilindro toma el combustible y expulsa los gases a través de válvulas de cabezal o válvulas deslizantes. Un muelle mantiene cerradas las válvulas hasta que se abren en el momento adecuado, al actuar las levas de un árbol de levas rotatorio movido por el cigüeñal, estando el conjunto coordinado mediante la cadena o la correa de distribución. Ha habido otros diversos sistemas de distribución, entre ellos la distribución por camisa corredera (sleeve-valve).

Cadena de distribución.
Encendido
Artículo principal: Encendido del motor

Tapa del distribuidor.
Los motores necesitan una forma de iniciar la ignición del combustible dentro del cilindro. En los motores Otto, el sistema de ignición consiste en un componente llamado bobina de encendido, que es un auto-transformador de alto voltaje al que está conectado un conmutador que interrumpe la corriente del primario para que se induzca un impulso eléctrico de alto voltaje en el secundario. Dicho impulso está sincronizado con la etapa de compresión de cada uno de los cilindros; el impulso se lleva al cilindro correspondiente (aquel que está comprimido en ese momento) utilizando un distribuidor rotativo y unos cables de grafito que dirigen la descarga de alto voltaje a la bujía. El dispositivo que produce la ignición es la bujía que, fijado en cada cilindro, dispone de dos electrodos separados unos milímetros, entre los cuales el impulso eléctrico produce una chispa, que inflama el combustible.
Si la bobina está en mal estado se sobrecalienta; esto produce pérdida de energía, aminora la chispa de las bujías y causa fallos en el sistema de encendido del automóvil.
Refrigeración
Artículo principal: Refrigeración en motores de combustión interna
Dado que la combustión produce calor, todos los motores deben disponer de algún tipo de sistema de refrigeración. Algunos motores estacionarios de automóviles y de aviones y los motores fueraborda se refrigeran con aire. Los cilindros de los motores que utilizan este sistema cuentan en el exterior con un conjunto de láminas de metal que emiten el calor producido dentro del cilindro. En otros motores se utiliza refrigeración por agua, lo que implica que los cilindros se encuentran dentro de una carcasa llena de agua que en los automóviles se hace circular mediante una bomba. El agua se refrigera al pasar por las láminas de un radiador. Es importante que el líquido que se usa para enfriar el motor no sea agua común y corriente porque los motores de combustión trabajan regularmente a temperaturas más altas que la temperatura de ebullición del agua. Esto provoca una alta presión en el sistema de enfriamiento dando lugar a fallas en los empaques y sellos de agua así como en el radiador; se usa un anticongelante, pues no hierve a la misma temperatura que el agua, sino a más alta temperatura, y que tampoco se congela a temperaturas muy bajas.
Otra razón por la cual se debe usar un anticongelante es que éste no produce sarro ni sedimentos que se adhieran a las paredes del motor y del radiador formando una capa aislante que disminuirá la capacidad de enfriamiento del sistema. En los motores navales se utiliza agua del mar para la refrigeración.
Sistema de arranque
Al contrario que los motores y las turbinas de vapor, los motores de combustión interna no producen un par de fuerzas cuando arrancan (véase Momento de fuerza), lo que implica que debe provocarse el movimiento del cigüeñal para que se pueda iniciar el ciclo. Los motores de automoción utilizan un motor eléctrico (el motor de arranque) conectado al cigüeñal por un embrague automático que se desacopla en cuanto arranca el motor. Por otro lado, algunos motores pequeños se arrancan a mano girando el cigüeñal con una cadena o tirando de una cuerda que se enrolla alrededor del volante del cigüeñal.
Otros sistemas de encendido de motores son los iniciadores de inercia, que aceleran el volante manualmente o con un motor eléctrico hasta que tiene la velocidad suficiente como para mover el cigüeñal. Ciertos motores grandes utilizan iniciadores explosivos que, mediante la explosión de un cartucho mueven una turbina acoplada al motor y proporcionan el oxígeno necesario para alimentar las cámaras de combustión en los primeros movimientos. Los iniciadores de inercia y los explosivos se utilizan sobre todo para arrancar motores de aviones.
Tipos de motores
Motor convencional del tipo Otto
Artículo principal: Ciclo Otto

Motor Otto DOHC de 4 tiempos.

motor Otto de 2T refrigerado por aire de una moto: azul aire, verde mezcla aire/combustible, gris gases quemados
El motor convencional del tipo Otto es de cuatro tiempos (4T), aunque en fuera borda y vehículos de dos ruedas hasta una cierta cilindrada se utilizó mucho el motor de dos tiempos (2T). El rendimiento térmico de los motores Otto modernos se ve limitado por varios factores, entre otros la pérdida de energía por la fricción y la refrigeración.
La termodinámica nos dice que el rendimiento de un motor alternativo depende en primera aproximación del grado de compresión. Esta relación suele ser de 8 a 1 o 10 a 1 en la mayoría de los motores Otto modernos. Se pueden utilizar proporciones mayores, como de 12 a 1, aumentando así la eficiencia del motor, pero este diseño requiere la utilización de combustibles de alto índice de octano para evitar el fenómeno de la detonación, que puede producir graves daños en el motor. La eficiencia o rendimiento medio de un buen motor Otto es de un 20 a un 25%: sólo la cuarta parte de la energía calorífica se transforma en energía mecánica.
Funcionamiento (Figura 1)
1. Tiempo de admisión - El aire y el combustible mezclados entran por la válvula de admisión
2. Tiempo de compresión - La mezcla aire/combustible es comprimida y encendida mediante la bujía .
3. Tiempo de combustión - El combustible se inflama y el pistón es empujado hacia abajo.
4. Tiempo de escape - Los gases de escape se conducen hacia fuera a través de la válvula de escape
Motores diésel

los cuatro tiempos del diesel 4T; pulsar sobre la imagen

motor diesel 2T, escape y admisión simultáneas
Artículo principal: Motor diésel
En teoría, el ciclo diésel difiere del ciclo Otto en que la combustión tiene lugar en este último a volumen constante en lugar de producirse a una presión constante. La mayoría de los motores diésel son asimismo del ciclo de cuatro tiempos, salvo los de tamaño muy grande, ferroviarios o marinos, que son de dos tiempos. Las fases son diferentes de las de los motores de gasolina.
En la primera carrera, la de admisión, el pistón sale hacia fuera, y se absorbe aire hacia la cámara de combustión. En la segunda carrera, la fase de compresión, en que el pistón se acerca. el aire se comprime a una parte de su volumen original, lo cual hace que suba su temperatura hasta unos 850 °C. Al final de la fase de compresión se inyecta el combustible a gran presión mediante la inyección de combustible con lo que se atomiza dentro de la cámara de combustión, produciéndose la inflamación a causa de la alta temperatura del aire. En la tercera fase, la fase de trabajo, la combustión empuja el pistón hacia fuera, trasmitiendo la fuerza longitudinal al cigüeñal a través de la biela, transformándose en fuerza de giro par motor. La cuarta fase es, al igual que en los motores Otto, la fase de escape, cuando vuelve el pistón hacia dentro.
Algunos motores diésel utilizan un sistema auxiliar de ignición para encender el combustible al arrancar el motor y mientras alcanza la temperatura adecuada.
La eficiencia o rendimiento (proporción de la energía del combustible que se transforma en trabajo y no se pierde como calor) de los motores diésel depende, de los mismos factores que los motores Otto, es decir de las presiones (y por tanto de las temperaturas) inicial y final de la fase de compresión. Por lo tanto es mayor que en los motores de gasolina, llegando a superar el 40%. en los grandes motores de dos tiempos de propulsión naval. Este valor se logra con un grado de compresión de 20 a 1 aproximadamente,contra 9 a 1 en los Otto. Por ello es necesaria una mayor robustez, y los motores diésel son, por lo general, más pesados que los motores Otto. Esta desventaja se compensa con el mayor rendimiento y el hecho de utilizar combustibles más baratos.
Los motores diésel grandes de 2T suelen ser motores lentos con velocidades de cigüeñal de 100 a 750 revoluciones por minuto (rpm o r/min), mientras que los motores de 4T trabajan hasta 2.500 rpm (camiones y autobuses) y 5.000 rpm. (automóviles)


La falta de cultura tecnológica y suministro de piezas en el taller dificulta la reparación por lo que es necesario. Elaborar y aplicar una tecnología de reparación y análisis de las Fallas a los MCI.